Device-to-device (D2D) links scheduling for avoiding excessive interference is critical to the success of wireless D2D communications. Most of the traditional scheduling schemes only consider the maximum throughput or fairness of the system and do not consider the freshness of information. In this paper, we propose a novel D2D links scheduling scheme to optimize an age of information (AoI) and throughput jointly scheduling problem when D2D links transmit packets under the last-come-first-serve policy with packet-replacement (LCFS-PR). It is motivated by the fact that the maximum throughput scheduling may reduce the activation probability of links with poor channel conditions, which results in terrible AoI performance. Specifically, We derive the expression of the overall average AoI and throughput of the network under the spatio-temporal interfering queue dynamics with the mean-field assumption. Moreover, a neural network structure is proposed to learn the mapping from the geographic location to the optimal scheduling parameters under a stationary randomized policy, where the scheduling decision can be made without estimating the channel state information(CSI) after the neural network is well-trained. To overcome the problem that implicit loss functions cannot be back-propagated, we derive a numerical solution of the gradient. Finally, numerical results reveal that the performance of the deep learning approach is close to that of a local optimal algorithm which has a higher computational complexity. The trade-off curve of AoI and throughput is also obtained, where the AoI tends to infinity when throughput is maximized.


翻译:避免过度干扰的设备到设备( D2D) 链接的时间安排对于无线 D2D 通信的成功至关重要。 大多数传统时间安排计划只考虑系统的最大输送量或公平性,而不考虑信息的新鲜性。 在本文中, 我们提出一个新的 D2D 链接计划, 以优化信息时代( AoI) 和通过量联合列表问题, 在 D2D 链接以包替换( LCFS-PR) 的方式传输端端端第一保存政策下的数据包时, 避免过度干扰 。 原因是, 最大通过量的时间安排可能降低与恶劣的频道条件连接的启动概率, 从而导致AoI 功能的可怕性能。 具体地说, 我们根据中度- 时间干扰队列的动态来显示总体平均 AoI 和网络的吞吐量。 此外, 提议一个神经网络结构, 学习从地理位置到固定随机替换( LCFSFS-PR-PR) 的优化列表参数, 在不估算频道状态信息时做出相应的决定, 在内层网络之后, 无法通过精确的计算结果。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员