The first generic self-stabilizing transformer for local problems in a constrained bandwidth model is introduced. This transformer can be applied to a wide class of locally checkable labeling (LCL) problems, converting a given fault free synchronous algorithm that satisfies certain conditions into a self-stabilizing synchronous algorithm for the same problem. The resulting self-stabilizing algorithms are anonymous, size-uniform, and \emph{fully adaptive} in the sense that their time complexity is bounded as a function of the number $k$ of nodes that suffered faults (possibly at different times) since the last legal configuration. Specifically, for graphs whose degrees are up-bounded by $\Delta$, the algorithms produced by the transformer stabilize in time proportional to $\log (k + \Delta)$ in expectation, independently of the number of nodes in the graph. As such, the transformer is applicable also for infinite graphs (with degree bound $\Delta$). Another appealing feature of the transformer is its small message size overhead. The transformer is applied to known algorithms (or simple variants thereof) for some classic LCL problems, producing the first anonymous size-uniform self-stabilizing algorithms for these problems that are provably fully adaptive. From a technical point of view, the transformer's key design feature is a novel probabilistic tool that allows different nodes to act in synchrony even though their clocks may have been adversarially manipulated.
翻译:引入了第一个用于限制带宽模型中本地问题的通用自我稳定变压器。 这个变压器可以应用到一系列广泛的本地可检查标签( LCL) 问题, 将满足某些条件的特有过错自由同步算法转换为同一问题的自稳定同步算法。 由此产生的自稳定算法是匿名的, 大小统一, 和\emph{ 完全适应}, 其含义是, 这些变压器的时间复杂度与自上一个法律配置以来遭受过错的节点( 可能在不同时间) 的 美元数的函数有关。 具体地说, 对于以$\ delta$为上限的图表, 将一个满足某些条件的特有错点转换器生成的算法转换算法转换成一个时间与 $\log( k+\ Delta) 相匹配的同步算法。 因此, 变压器也可以适用于无限的图表( 程度为 $\ Delta 美元 ) 。 变压器的另一个吸引人的特性是其小的电文体大小, 。 从一个小的顶端端口号的图。, 变压的变动变动算法是用来生成的缩变压的变压的变压法, 这些变式的变式的变式的变式的变式的变式的变式的变式的变压法, 虽然的变式的变式的变式的变式的变式,, 它的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式, 它的变式的变式的变式可能是的变式, 它的变式的变式的变式的变式的变式的变式的变式可能是的变式可能是的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式的变式