360{\deg} images are informative -- it contains omnidirectional visual information around the camera. However, the areas that cover a 360{\deg} image is much larger than the human's field of view, therefore important information in different view directions is easily overlooked. To tackle this issue, we propose a method for predicting the optimal set of Region of Interest (RoI) from a single 360{\deg} image using the visual saliency as a clue. To deal with the scarce, strongly biased training data of existing single 360{\deg} image saliency prediction dataset, we also propose a data augmentation method based on the spherical random data rotation. From the predicted saliency map and redundant candidate regions, we obtain the optimal set of RoIs considering both the saliency within a region and the Interaction-Over-Union (IoU) between regions. We conduct the subjective evaluation to show that the proposed method can select regions that properly summarize the input 360{\deg} image.
翻译:360\ deg} 图像信息丰富, 它包含相机周围的全向视觉信息。 然而, 覆盖360\ deg} 图像的区域比人类的视野大得多, 因此不同视图方向的重要信息很容易被忽略。 为了解决这个问题, 我们提出了一个方法, 用视觉显著性作为线索, 从单一360\ deg} 图像中预测最佳利益区域集( ROI ) 。 为了处理现有单个 360\ deg} 图像突出预测数据集中稀少的、 强烈偏差的培训数据, 我们还根据球形随机数据旋转, 提出了一个数据增强方法 。 从预测的显著地图和冗余候选区域中, 我们从一个区域的突出度和区域间的交互- over- Over- Uniion ( IoU) 中获取了最佳的ROI 数据集 。 我们进行主观评估, 以显示拟议方法可以选择正确概括输入 360\ dedeg} 图像的区域 。