In this paper we study the problem of coloring a unit interval graph which changes dynamically. In our model the unit intervals are added or removed one at the time, and have to be colored immediately, so that no two overlapping intervals share the same color. After each update only a limited number of intervals is allowed to be recolored. The limit on the number of recolorings per update is called the recourse budget. In this paper we show, that if the graph remains $k$-colorable at all times, and the updates consist of insertions only, then we can achieve the amortized recourse budget of $O(k^7 \log n)$ while maintaining a proper coloring with $k$ colors. This is an exponential improvement over the result in [Bosek et al., Recoloring Interval Graphs with Limited Recourse Budget. SWAT 2020] in terms of both $k$ and $n$. We complement this result by showing the lower bound of $\Omega(n)$ on the amortized recourse budget in the fully dynamic setting. Our incremental algorithm can be efficiently implemented. As a byproduct of independent interest we include a new result on coloring proper circular arc graphs. Let $L$ be the maximum number of arcs intersecting in one point for some set of unit circular arcs $\mathcal{A}$. We show that if there is a set $\mathcal{A}'$ of non-intersecting unit arcs of size $L^2-1$ such that $\mathcal{A} \cup \mathcal{A}'$ does not contain $L+1$ arcs intersecting in one point, then it is possible to color $\mathcal{A}$ with $L$ colors. This complements the work on unit circular arc coloring, which specifies sufficient conditions needed to color $\mathcal{A}$ with $L+1$ colors or more.
翻译:在本文中,我们研究的是在动态变化的单位间距图中涂色的问题。 { 我们的模型中, 单位间距在时间上被添加或删除一个美元, 并且必须立即进行颜色化, 这样不会有两个重叠间距共享相同的颜色。 每次更新后只允许一定的间距重新颜色。 每次更新的重新颜色数量限制被称为追索预算。 在本文中, 我们显示, 如果图表在任何时候都保持美元色, 并且更新只包含插入, 那么我们就可以在完全动态设置的 $( k_ 7\ log n) 中实现美元( 美元) 的摊合追索预算 。 这样, 我们的递增性运算值不是以美元为颜色的颜色值 。 以有限的再版预算预算预算为单位, 以美元为单位, 我们的递增性计算值为美元。