In presence of spatial heterogeneity, models applied to geographic data face a trade-off between producing general results and capturing local variations. Modelling at a regional scale may allow the identification of solutions that optimize both accuracy and generality. However, most current regionalization algorithms assume homogeneity in the attributes to delineate regions without considering the processes that generate the attributes. In this paper, we propose a generalized regionalization framework based on a two-item objective function which favors solutions with the highest overall accuracy while minimizing the number of regions. We introduce three regionalization algorithms, which extend previous methods that account for spatially constrained clustering. The effectiveness of the proposed framework is examined in regression experiments on both simulated and real data. The results show that a spatially implicit algorithm extended with an automatic post-processing procedure outperforms spatially explicit approaches. Our suggested framework contributes to better capturing the processes associated with spatial heterogeneity with potential applications in a wide range of geographical models.
翻译:在存在空间差异的情况下,适用于地理数据的模型在得出一般结果和捕捉地方差异之间面临着权衡取舍。在区域规模上进行建模,可以找到优化准确性和普遍性的解决办法。然而,大多数目前的区域化算法在属性上假定同一性以划定区域,而不考虑产生属性的过程。在本文件中,我们提议基于两个项目目标功能的普遍化区域化框架,这一功能有利于获得最高总体精确度的解决办法,同时最大限度地减少区域数量。我们引入了三种区域化算法,这三种算法扩展了以前考虑到空间受限制集群的方法。在模拟数据和真实数据的回归实验中审查了拟议框架的有效性。结果显示,空间内隐含算法扩展了自动后处理程序,超越了空间上明确的方法。我们所建议的框架有助于更好地捕捉与空间多样性相关的进程,这些进程有可能在广泛的地理模型中应用。