Reed--Solomon codes are a classic family of error-correcting codes consisting of evaluations of low-degree polynomials over a finite field on some sequence of distinct field elements. They are widely known for their optimal unique-decoding capabilities, but their list-decoding capabilities are not fully understood. Given the prevalence of Reed-Solomon codes, a fundamental question in coding theory is determining if Reed--Solomon codes can optimally achieve list-decoding capacity. A recent breakthrough by Brakensiek, Gopi, and Makam, established that Reed--Solomon codes are combinatorially list-decodable all the way to capacity. However, their results hold for randomly-punctured Reed--Solomon codes over an exponentially large field size $2^{O(n)}$, where $n$ is the block length of the code. A natural question is whether Reed--Solomon codes can still achieve capacity over smaller fields. Recently, Guo and Zhang showed that Reed--Solomon codes are list-decodable to capacity with field size $O(n^2)$. We show that Reed--Solomon codes are list-decodable to capacity with linear field size $O(n)$, which is optimal up to the constant factor. We also give evidence that the ratio between the alphabet size $q$ and code length $n$ cannot be bounded by an absolute constant. Our proof is based on the proof of Guo and Zhang, and additionally exploits symmetries of reduced intersection matrices. With our proof, which maintains a hypergraph perspective of the list-decoding problem, we include an alternate presentation of ideas of Brakensiek, Gopi, and Makam that more directly connects the list-decoding problem to the GM-MDS theorem via a hypergraph orientation theorem.
翻译:Reed-Solomon码是一类经典的纠错码,由有限域中低次多项式在不同的有限域元素上进行求值而构成。它们以最佳的唯一译码能力而著称,但它们的列表译码能力尚未完全被理解。鉴于Reed-Solomon码的普遍应用,信息论中的一个基本问题是确定Reed-Solomon码是否能够最优地实现列表译码容量。最近,Brakensiek、Gopi和Makam的一个重要突破表明,随机删除的Reed-Solomon码在指数级的大域$2^{O(n)}$上是组合上列表译码的,其中$n$为编码长度。一个自然的问题是,Reed-Solomon码是否仍然能够在更小的有限域上实现容量。最近,Guo和Zhang证明Reed-Solomon码可以使用大小为$O(n^2)$的有限域达到容量列表解码。我们证明了Reed-Solomon码可以在线性有限域大小$O(n)$的条件下达到容量,这是最优的(直到常数因子)。我们还提供了证据,即字母表大小$q$和代码长度$n$之间的比率不能由绝对常数限制。我们的证明基于Guo和Zhang的证明,并进一步利用了缩减的交集矩阵的对称性。我们的证明保持了列表解码问题的超图视角,并通过超图定向定理将列表解码问题与GM-MDS定理直接联系起来。