Reed--Solomon codes are a classic family of error-correcting codes consisting of evaluations of low-degree polynomials over a finite field on some sequence of distinct field elements. They are widely known for their optimal unique-decoding capabilities, but their list-decoding capabilities are not fully understood. Given the prevalence of Reed-Solomon codes, a fundamental question in coding theory is determining if Reed--Solomon codes can optimally achieve list-decoding capacity. A recent breakthrough by Brakensiek, Gopi, and Makam, established that Reed--Solomon codes are combinatorially list-decodable all the way to capacity. However, their results hold for randomly-punctured Reed--Solomon codes over an exponentially large field size $2^{O(n)}$, where $n$ is the block length of the code. A natural question is whether Reed--Solomon codes can still achieve capacity over smaller fields. Recently, Guo and Zhang showed that Reed--Solomon codes are list-decodable to capacity with field size $O(n^2)$. We show that Reed--Solomon codes are list-decodable to capacity with linear field size $O(n)$, which is optimal up to the constant factor. We also give evidence that the ratio between the alphabet size $q$ and code length $n$ cannot be bounded by an absolute constant. Our proof is based on the proof of Guo and Zhang, and additionally exploits symmetries of reduced intersection matrices. With our proof, which maintains a hypergraph perspective of the list-decoding problem, we include an alternate presentation of ideas of Brakensiek, Gopi, and Makam that more directly connects the list-decoding problem to the GM-MDS theorem via a hypergraph orientation theorem.


翻译:Reed-Solomon码是一类经典的纠错码,由有限域中低次多项式在不同的有限域元素上进行求值而构成。它们以最佳的唯一译码能力而著称,但它们的列表译码能力尚未完全被理解。鉴于Reed-Solomon码的普遍应用,信息论中的一个基本问题是确定Reed-Solomon码是否能够最优地实现列表译码容量。最近,Brakensiek、Gopi和Makam的一个重要突破表明,随机删除的Reed-Solomon码在指数级的大域$2^{O(n)}$上是组合上列表译码的,其中$n$为编码长度。一个自然的问题是,Reed-Solomon码是否仍然能够在更小的有限域上实现容量。最近,Guo和Zhang证明Reed-Solomon码可以使用大小为$O(n^2)$的有限域达到容量列表解码。我们证明了Reed-Solomon码可以在线性有限域大小$O(n)$的条件下达到容量,这是最优的(直到常数因子)。我们还提供了证据,即字母表大小$q$和代码长度$n$之间的比率不能由绝对常数限制。我们的证明基于Guo和Zhang的证明,并进一步利用了缩减的交集矩阵的对称性。我们的证明保持了列表解码问题的超图视角,并通过超图定向定理将列表解码问题与GM-MDS定理直接联系起来。

0
下载
关闭预览

相关内容

自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
2+阅读 · 2022年10月22日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
12+阅读 · 2018年6月25日
从 Encoder 到 Decoder 实现 Seq2Seq 模型
AI研习社
10+阅读 · 2018年2月10日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关VIP内容
自然语言处理顶会NAACL2022最佳论文出炉!
专知会员服务
42+阅读 · 2022年6月30日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
2+阅读 · 2022年10月22日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
12+阅读 · 2018年6月25日
从 Encoder 到 Decoder 实现 Seq2Seq 模型
AI研习社
10+阅读 · 2018年2月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员