Physiological monitoring in intensive care units (ICU) generates data that can be used in clinical research. However, the recording conditions in clinical settings limit the automated extraction of relevant information from physiological signals due to noise and artifacts. Therefore, removing artifacts before clinical research is essential. Manual annotation by experienced researchers, which is the gold standard for removing artifacts, is time-consuming and costly due to the volume of the data generated in the ICU. In this study, we propose a hybrid artifact detection system that combines a Variational Autoencoder with a statistical detection component for the labeling of artifactual samples to automate the costly process of cleaning physiological recordings. The system is applied to minute-by-minute mean blood pressure signals from an intensive care unit dataset. Its performance is verified by manual annotations made by an expert. We benchmark the performance of our system with two other systems that combine an ARIMA or an autoencoder-based model with our statistical detection component. Our results indicate that the system consistently achieves sensitivity and specificity levels of over 90%. Thus, it provides an initial foundation to automate data cleaning in recordings from ICU.
翻译:强化护理单位的生理监测(ICU)生成了可用于临床研究的数据,然而,临床环境的记录条件限制了从生理信号中自动提取因噪音和人工制品而产生的相关信息,因此,在临床研究之前必须删除文物。有经验的研究人员人工说明是清除文物的黄金标准,由于在ICU中生成的数据量很大,这种说明既费时又费钱。在本研究中,我们建议采用混合工艺检测系统,将变异自动编码器与统计检测部分相结合,将原生样品标签的统计检测部分与成本高昂的清洁生理记录过程自动化联系起来。该系统用于从强化护理单位数据集中逐分钟平均血压信号。其性能由专家手工说明加以核实。我们用将ARIMA或自动编码模型与我们的统计检测部分相结合的其他两个系统来衡量我们的系统性能。我们发现的结果表明,该系统始终达到90%以上的敏感度和特性水平。因此,该系统为从ICTU的录音中进行自动数据清理提供了初始基础。