Tropical cyclone (TC) intensity forecasts are issued by human forecasters who evaluate spatio-temporal observations (e.g., satellite imagery) and model output (e.g., numerical weather prediction, statistical models) to produce forecasts every 6 hours. Within these time constraints, it can be challenging to draw insight from such data. While high-capacity machine learning methods are well suited for prediction problems with complex sequence data, extracting interpretable scientific information with such methods is difficult. Here we leverage powerful AI prediction algorithms and classical statistical inference to identify patterns in the evolution of TC convective structure leading up to the rapid intensification of a storm, hence providing forecasters and scientists with key insight into TC behavior.
翻译:热带气旋(TC)强度预测由人类预报员发布,他们评估时空观测(例如卫星图像)和模型输出(例如数字天气预测、统计模型),每6小时作出预测;在这些时间限制内,很难从这些数据中得出洞察力;虽然高能力机器学习方法非常适合使用复杂序列数据的预测问题,但很难用这种方法提取可解释的科学信息;在这里,我们利用强大的人工智能预测算法和典型的统计推论,查明导致风暴迅速加剧的三角脉冲结构演变模式,从而向预报人员和科学家提供关于三角关系行为的关键洞察力。