Background Analyzing kinematic and video data can help identify potentially erroneous motions that lead to sub-optimal surgeon performance and safety-critical events in robot-assisted surgery. Methods We develop a rubric for identifying task and gesture-specific Executional and Procedural errors and evaluate dry-lab demonstrations of Suturing and Needle Passing tasks from the JIGSAWS dataset. We characterize erroneous parts of demonstrations by labeling video data, and use distribution similarity analysis and trajectory averaging on kinematic data to identify parameters that distinguish erroneous gestures. Results Executional error frequency varies by task and gesture, and correlates with skill level. Some predominant error modes in each gesture are distinguishable by analyzing error-specific kinematic parameters. Procedural errors could lead to lower performance scores and increased demonstration times but also depend on surgical style. Conclusions This study provides insights into context-dependent errors that can be used to design automated error detection mechanisms and improve training and skill assessment.
翻译:背景分析动态和视频数据分析有助于识别可能导致机器人辅助外科手术中次优外科性能和安全临界事件的潜在错误动作。我们开发了用于确定任务和特定动作执行和程序错误的标语,并评估JIGSAWS数据集中Sulturing和Needle Passing任务的干拉演示。我们通过标注视频数据来辨别演示的错误部分,并使用分布相近的分析和运动数据平均轨迹来辨别区分错误手势的参数。结果执行错误频率因任务和手势而异,与技能水平相关。每个动作中的一些主要错误模式可以通过分析特定错误的运动参数加以区分。程序错误可能导致性能分数降低,增加演示时间,但也取决于外科风格。本研究对根据背景的错误进行了深入了解,这些错误可用来设计自动错误探测机制,改进培训和技能评估。