The spatio-temporal autoregressive moving average (STARMA) model is frequently used in several studies of multivariate time series data, where the assumption of stationarity is important, but it is not always guaranteed in practice. One way to proceed is to consider locally stationary processes. In this paper we propose a time-varying spatio-temporal autoregressive and moving average (tvSTARMA) modelling based on the locally stationarity assumption. The time-varying parameters are expanded as linear combinations of wavelet bases and procedures are proposed to estimate the coefficients. Some simulations and an application to historical daily precipitation records of Midwestern states of the USA are illustrated.
翻译:摘要:在多元时间序列数据的基础研究中,空间-时间自回归滑动平均(STARMA)模型经常被使用,其中假设平稳性在实践中并不总是被保证。一种解决方法是考虑到本地平稳过程。在本文中,我们根据本地平稳性的假设,提出了一种基于时变自回归和滑动平均(tvSTARMA)建模方法。时变参数被扩展为小波基函数的线性组合,提出了一些方法来估计系数。演示了一些模拟和美国中西部州历史上日降雨记录的应用。