Since the emergence of wireless communication networks, a plethora of research papers focus their attention on the quality aspects of wireless links. The analysis of the rich body of existing literature on link quality estimation using models developed from data traces indicates that the techniques used for modeling link quality estimation are becoming increasingly sophisticated. A number of recent estimators leverage machine learning (ML) techniques that require a sophisticated design and development process, each of which has a great potential to significantly affect the overall model performance. In this paper, we provide a comprehensive survey on link quality estimators developed from empirical data and then focus on the subset that use ML algorithms. We analyze ML-based link quality estimation (LQE) models from two perspectives using performance data. Firstly, we focus on how they address quality requirements that are important from the perspective of the applications they serve. Secondly, we analyze how they approach the standard design steps commonly used in the ML community. Having analyzed the scientific body of the survey, we review existing open source datasets suitable for LQE research. Finally, we round up our survey with the lessons learned and design guidelines for ML-based LQE development and dataset collection.
翻译:自无线通信网络出现以来,大量研究论文都把注意力集中在无线连接的质量方面。利用从数据痕迹中得出的模型对现有大量关于链接质量估算的文献进行分析,结果表明,用于模拟链接质量估算的技术正在变得越来越复杂。最近的一些测算员利用了机器学习技术,这些技术需要复杂的设计和开发过程,每一种技术都极有可能对总体模型性能产生重大影响。在本文件中,我们提供了一份关于从经验数据中开发的连接质量估计数据的全面调查,然后侧重于使用 ML 算法的子。我们从两个角度分析基于 ML 的链接质量估算(LQE) 模型。首先,我们注重如何从它们所服务的应用角度处理重要的质量要求。第二,我们分析了它们如何对待ML 社区常用的标准设计步骤。我们分析了调查的科学机构,我们审查了适合LQE研究的现有开放源数据集。最后,我们用ML LQE 开发和数据收集的经验教训和设计准则来进行我们的调查。