Federated Learning (FL) is a technique to train models using data distributed across devices. Differential Privacy (DP) provides a formal privacy guarantee for sensitive data. Our goal is to train a large neural network language model (NNLM) on compute-constrained devices while preserving privacy using FL and DP. However, the DP-noise introduced to the model increases as the model size grows, which often prevents convergence. We propose Partial Embedding Updates (PEU), a novel technique to decrease noise by decreasing payload size. Furthermore, we adopt Low Rank Adaptation (LoRA) and Noise Contrastive Estimation (NCE) to reduce the memory demands of large models on compute-constrained devices. This combination of techniques makes it possible to train large-vocabulary language models while preserving accuracy and privacy.
翻译:不同隐私(DP)为敏感数据提供了正式的隐私保障,我们的目标是在使用FL和DP保护隐私的同时,就计算受限制的装置培训大型神经网络语言模型(NNLM),同时使用FL和DP保护隐私。然而,随着模型规模的扩大,对模型引入的DP-Noise会增加,这往往阻碍聚合。我们建议部分嵌入更新(PEU),这是一种通过降低有效载荷尺寸减少噪音的新技术。此外,我们采用了低级别适应(LORA)和噪音反比估计(NCE),以减少对计算受限制装置的大型模型的记忆需求。这种技术结合使得有可能在保持准确性和隐私的同时培训大型语言模型。