Recommender systems research tends to evaluate model performance offline and on randomly sampled targets, yet the same systems are later used to predict user behavior sequentially from a fixed point in time. Simulating online recommender system performance is notoriously difficult and the discrepancy between online and offline behaviors is typically not accounted for in offline evaluations. This disparity permits weaknesses to go unnoticed until the model is deployed in a production setting. In this paper, we first demonstrate how omitting temporal context when evaluating recommender system performance leads to false confidence. To overcome this, we postulate that offline evaluation protocols can only model real-life use-cases if they account for temporal context. Next, we propose a training procedure to further embed the temporal context in existing models. We use a multi-objective approach to introduce temporal context into traditionally time-unaware recommender systems and confirm its advantage via the proposed evaluation protocol. Finally, we validate that the Pareto Fronts obtained with the added objective dominate those produced by state-of-the-art models that are only optimized for accuracy on three real-world publicly available datasets. The results show that including our temporal objective can improve recall@20 by up to 20%.


翻译:推荐人系统研究倾向于对模型的脱线性能和随机抽样目标进行评价,但后来又使用同样的系统来从固定时间点连续预测用户的行为。 模拟在线推荐人系统性能非常困难, 网上和离线行为之间的差异通常在离线评价中不计。 这种差异允许在模型在制作环境中被部署之前忽略弱点。 在本文件中, 我们首先演示了在评价推荐人系统性能时忽略时间背景如何导致错误信心。 为了克服这一点, 我们假设离线评价协议只有在考虑到时间背景的情况下, 才能模拟实际使用案例。 接下来, 我们提议了一个培训程序, 在现有模型中进一步嵌入时间背景。 我们使用多目标方法, 将时间背景引入传统的时间软件性推荐人系统, 并通过拟议的评价协议确认其优势。 最后, 我们确认, 与附加目标获得的Pareto Front 控制了由州- 艺术模型生成的模型, 这些模型只能优化三个真实世界公开数据集的准确性。 包括我们的时间性目标20 到20 % 。

0
下载
关闭预览

相关内容

专知会员服务
28+阅读 · 2021年8月2日
【2020新书】Python文本分析,104页pdf
专知会员服务
98+阅读 · 2020年12月23日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
Arxiv
92+阅读 · 2020年2月28日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
7+阅读 · 2018年11月29日
VIP会员
相关VIP内容
专知会员服务
28+阅读 · 2021年8月2日
【2020新书】Python文本分析,104页pdf
专知会员服务
98+阅读 · 2020年12月23日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
推荐中的序列化建模:Session-based neural recommendation
机器学习研究会
18+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员