深度神经网络(DNN)模型已被广泛应用于在线广告点击率(CTR)预测。CTR训练框架通常由嵌入层和多层感知机(MLP)组成。在百度搜索广告系统中(又名凤巢,Phoenix Nest),新一代的CTR训练平台变成了PaddleBox,一个基于GPU的参数服务器系统。

在这篇论文中,作者介绍了百度最近更新的CTR训练框架,称为门控增强的多任务神经网络(GemNN)。特别地,他们开发了一种基于神经网络的多任务学习模型用于CTR预估,它以粗粒度到细粒度的方式逐步减少候选广告,并允许上游任务与下游任务之间的参数进行共享,从而提高训练效率。此外,作者还在嵌入层和MLP之间引入了门控机制,用于学习特征交互和控制传递到MLP层的信息流。

作者在百度PaddleBox平台部署了该模型方案,并观察到在离线和在线评估方面都有相当大的改进,它现在已经是百度广告系统的一部分。

https://arxiv.org/abs/2007.03519

成为VIP会员查看完整内容
9

相关内容

专知会员服务
16+阅读 · 2021年9月18日
专知会员服务
12+阅读 · 2021年8月8日
【AAAI2021】预训练用户表示提升推荐
专知会员服务
43+阅读 · 2021年2月8日
专知会员服务
22+阅读 · 2020年9月25日
【CIKM2020】学习个性化网络搜索会话
专知会员服务
14+阅读 · 2020年9月20日
【SIGIR 2020】 基于协同注意力机制的知识增强推荐模型
专知会员服务
89+阅读 · 2020年7月23日
【SIGIR2020】LightGCN: 简化和增强图卷积网络推荐
专知会员服务
72+阅读 · 2020年6月1日
【CTR】ESMM:多任务联合学习
深度学习自然语言处理
8+阅读 · 2020年8月3日
基于深度交叉特征的推荐系统
微信AI
9+阅读 · 2019年2月1日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
3+阅读 · 2017年7月6日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关VIP内容
专知会员服务
16+阅读 · 2021年9月18日
专知会员服务
12+阅读 · 2021年8月8日
【AAAI2021】预训练用户表示提升推荐
专知会员服务
43+阅读 · 2021年2月8日
专知会员服务
22+阅读 · 2020年9月25日
【CIKM2020】学习个性化网络搜索会话
专知会员服务
14+阅读 · 2020年9月20日
【SIGIR 2020】 基于协同注意力机制的知识增强推荐模型
专知会员服务
89+阅读 · 2020年7月23日
【SIGIR2020】LightGCN: 简化和增强图卷积网络推荐
专知会员服务
72+阅读 · 2020年6月1日
微信扫码咨询专知VIP会员