We compare two first-order low-rank optimization algorithms, namely $\text{P}^2\text{GD}$ (Schneider and Uschmajew, 2015), which has been proven to be apocalypse-prone (Levin et al., 2021), and its apocalypse-free version $\text{P}^2\text{GDR}$ obtained by equipping $\text{P}^2\text{GD}$ with a suitable rank reduction mechanism (Olikier et al., 2022). Here an apocalypse refers to the situation where the stationarity measure goes to zero along a convergent sequence whereas it is nonzero at the limit. The comparison is conducted on two simple examples of apocalypses, the original one (Levin et al., 2021) and a new one. We also present a potential side effect of the rank reduction mechanism of $\text{P}^2\text{GDR}$ and discuss the choice of the rank reduction parameter.
翻译:我们比较了两个第一级低级优化算法,即: $\text{P ⁇ 2\text{GD}$(Schneider和Uschmajew,2015年),该算法被证明是易受世界末日影响的(Levin等人,2021年),以及它通过装备$text{P ⁇ 2\text{GD}获得的无末日元版本$(P ⁇ 2\text{GD}$)与适当的降级机制(Olikier等人,2022年)。这里的启示录是指定位措施沿趋同序列零,而其极限为非零的情况。比较是在最初的两种简单的例子(Levin等人,2021年)和一个新的例子上进行的。我们还展示了降级机制$\text{P ⁇ 2\text{GDR}的潜在副作用,并讨论了降级参数的选择。