We define a broader family of corruption processes that generalizes previously known diffusion models. To reverse these general diffusions, we propose a new objective called Soft Score Matching that provably learns the score function for any linear corruption process and yields state of the art results for CelebA. Soft Score Matching incorporates the degradation process in the network and trains the model to predict a clean image that after corruption matches the diffused observation. We show that our objective learns the gradient of the likelihood under suitable regularity conditions for the family of corruption processes. We further develop a principled way to select the corruption levels for general diffusion processes and a novel sampling method that we call Momentum Sampler. We evaluate our framework with the corruption being Gaussian Blur and low magnitude additive noise. Our method achieves state-of-the-art FID score $1.85$ on CelebA-64, outperforming all previous linear diffusion models. We also show significant computational benefits compared to vanilla denoising diffusion.
翻译:我们定义了更广泛的腐败过程,将以前已知的传播模式加以概括。为了扭转这些普遍扩散,我们提出了一个新的目标,即“软评分匹配”,该新目标可以学习任何线性腐败过程的评分功能,并产生CelebA的最新结果。软评分匹配将网络中的退化过程纳入其中,并培训模型来预测腐败与分散观察相匹配的清洁形象。我们表明,我们的目标了解腐败过程在适当规律条件下的可能性的梯度。我们进一步开发了一种原则性方法,选择一般传播过程的腐败程度,以及一种我们称之为“运动采样器”的新式抽样方法。我们用高斯·布鲁尔和低强度添加噪音来评估我们的腐败框架。我们的方法在CelebA-64上实现了最先进的FID评分1.85美元,比以往所有线性扩散模式都高。我们还展示了与香草脱色扩散相比的重大计算效益。