The goal of this paper is to provide exact and terminating algorithms for the formal analysis of deterministic continuous-time control systems with affine input and polynomial state dynamics (in short, polynomial systems). We consider the following semantic properties: zeroness and equivalence, input independence, linearity, and analyticity. Our approach is based on Chen-Fliess series, which provide a unique representation of the dynamics of such systems via their formal generating series. Our starting point is Fliess' seminal work showing how the semantic properties above are mirrored by corresponding combinatorial properties on generating series. Next, we observe that the generating series of polynomial systems coincide with the class of shuffle-finite series, a nonlinear generalisation of Sch\"utzenberger's rational series which has recently been studied in the context of automata theory and enumerative combinatorics. We exploit and extend recent results in the algorithmic analysis of shuffle-finite series (such as zeroness, equivalence, and commutativity) to show that the semantic properties above can be decided exactly and in finite time for polynomial systems. Some of our analyses rely on a novel technical contribution, namely that shuffle-finite series are closed under support restrictions with commutative regular languages, a result of independent interest.
翻译:暂无翻译