Factorization of scattering is the hallmark of integrable 1+1 dimensional quantum field theories. For factorization of scattering to be possible the set of masses and momenta must be conserved in any two-to-two scattering process. We use this fact to constrain the form of the Ramond-Ramond fluxes for integrable supergravity anti-de Sitter backgrounds by analysing tree-level scattering of two AdS bosons into two fermions on the worldsheet of a BMN string. We find a condition which can be efficiently used to rule out integrability of AdS strings and therefore of the corresponding AdS/CFT dualities, as we demonstrate for some simple examples.


翻译:散射的分化是不可磨灭的 1+1 维量场理论的特征。 要将散射的分化成为可能,就必须在任何两到二分散过程中保护质量和瞬间。 我们利用这一事实来限制不可磨灭的超重力反蒸发背景的雷蒙德-雷蒙通量的形式,方法是分析树层中两个ADS 波子散射成BMN 字符串世界表上的两个发酵。 我们发现一个可以有效用来排除ADS 字符串的不兼容性以及相应的ADS/FF的二元性的条件,我们为一些简单的例子展示了这一点。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年10月11日
Arxiv
3+阅读 · 2018年4月5日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【推荐】深度学习时序处理文献列表
机器学习研究会
7+阅读 · 2017年11月29日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员