Positive dependence is present in many real world data sets and has appealing stochastic properties. In particular, the notion of multivariate total positivity of order 2 ($ \text{MTP}_2 $) is a convex constraint and acts as an implicit regularizer in the Gaussian case. We study positive dependence in multivariate extremes and introduce $ \text{EMTP}_2 $, an extremal version of $ \text{MTP}_2 $. This notion turns out to appear prominently in extremes and, in fact, it is satisfied by many classical models. For a H\"usler--Reiss distribution, the analogue of a Gaussian distribution in extremes, we show that it is $ \text{EMTP}_2 $ if and only if its precision matrix is a Laplacian of a connected graph. We propose an estimator for the parameters of the H\"usler--Reiss distribution under $ \text{EMTP}_2 $ as the solution of a convex optimization problem with Laplacian constraint. We prove that this estimator is consistent and typically yields a sparse model with possibly non-decomposable extremal graphical structure. At the example of two data sets, we illustrate this regularization and the superior performance compared to existing methods.
翻译:在许多真实的世界数据集中都存在正依赖性, 并且具有令人兴奋的随机特性。 特别是, 多变性总正感概念 2 $\ text{ MTP}2 $( comvex sublication sublication) 是一个曲线的制约, 并充当高山案例的隐含调节器。 我们研究多变极端中的正依赖性, 并引入 $\ text{ EMTP}2 $( explremal 版本 $\ text{ MTP}2 $) 。 这个概念在极端中表现突出, 事实上它为许多经典模型的模型所满足。 对于 H\ “ usler- Reiss ” 的分布, 高山极端分布的类比, 我们显示, 只有在其精确矩阵是连接图的拉平面图的拉平面值时, 我们提议一个估计值为“ usler- Reis ” 分布参数的参数, 并且事实上它被许多典型模型优化问题的解决方案所满足。 我们通常会证明, 与这个可变压的图像的模型的模型结构是, 。