End-to-end models have achieved impressive results on the task of automatic speech recognition (ASR). For low-resource ASR tasks, however, labeled data can hardly satisfy the demand of end-to-end models. Self-supervised acoustic pre-training has already shown its amazing ASR performance, while the transcription is still inadequate for language modeling in end-to-end models. In this work, we fuse a pre-trained acoustic encoder (wav2vec2.0) and a pre-trained linguistic encoder (BERT) into an end-to-end ASR model. The fused model only needs to learn the transfer from speech to language during fine-tuning on limited labeled data. The length of the two modalities is matched by a monotonic attention mechanism without additional parameters. Besides, a fully connected layer is introduced for the hidden mapping between modalities. We further propose a scheduled fine-tuning strategy to preserve and utilize the text context modeling ability of the pre-trained linguistic encoder. Experiments show our effective utilizing of pre-trained modules. Our model achieves better recognition performance on CALLHOME corpus (15 hours) than other end-to-end models.


翻译:终端到终端模型在自动语音识别任务方面已经取得了令人印象深刻的成果。然而,对于低资源语言识别任务,标签数据无法满足终端到终端模型的需求。自监督的声学预培训已经展示出其惊人的ASR性能,而转录还不足以在终端到终端模型中进行语言建模。在这项工作中,我们将预先培训的声学编码器(wav2vec2.0)和预先培训的语言编码器(BERT)合并成一个终端到终端的ASR模型。在对有限标签数据进行微调时,装配的模型只需要学习从语言到语言的转换。两种模式的长度配有单一的注意机制,而没有附加参数。此外,为各种模式之间的隐藏绘图引入了一个完全相连的层。我们进一步提出了一个有计划的微调战略,以保存和利用预先培训的语言编码器的文本建模能力。实验显示了我们如何有效地利用预先培训的模块。我们的模型在AMECON模型上取得了更好的识别性表现。

1
下载
关闭预览

相关内容

语音识别是计算机科学和计算语言学的一个跨学科子领域,它发展了一些方法和技术,使计算机可以将口语识别和翻译成文本。 它也被称为自动语音识别(ASR),计算机语音识别或语音转文本(STT)。它整合了计算机科学,语言学和计算机工程领域的知识和研究。
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
已删除
将门创投
6+阅读 · 2017年11月27日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
3+阅读 · 2018年6月19日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | EMNLP 2019等国际会议信息6条
Call4Papers
18+阅读 · 2019年4月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
语音顶级会议Interspeech2018接受论文列表!
专知
6+阅读 · 2018年6月10日
Linguistically Regularized LSTMs for Sentiment Classification
黑龙江大学自然语言处理实验室
8+阅读 · 2018年5月4日
已删除
将门创投
6+阅读 · 2017年11月27日
Top
微信扫码咨询专知VIP会员