With the increasing adoption of intelligent transportation systems and the upcoming era of autonomous vehicles, vehicular services (such as, remote driving, cooperative awareness, and hazard warning) will face an ever changing and dynamic environment. Traffic flows on the roads is a critical condition for these services and, therefore, it is of paramount importance to forecast how they will evolve over time. By knowing future events (such as, traffic jams), vehicular services can be dimensioned in an on-demand fashion in order to minimize Service Level Agreements (SLAs) violations, thus reducing the chances of car accidents. This research departs from an evaluation of traditional time-series techniques with recent Machine Learning (ML)-based solutions to forecast traffic flows in the roads of Torino (Italy). Given the accuracy of the selected forecasting techniques, a forecast-based scaling algorithm is proposed and evaluated over a set of dimensioning experiments of three distinct vehicular services with strict latency requirements. Results show that the proposed scaling algorithm enables resource savings of up to a 5% at the cost of incurring in an increase of less than 0.4% of latency violations.


翻译:随着智能运输系统的日益采用和自治车辆即将到来的时代,车辆服务(如远程驾驶、合作意识和危险警告)将面临不断变化的动态环境。道路交通流量是这些服务的关键条件,因此,预测它们如何随时间演变至关重要。通过了解未来事件(如交通堵塞),车辆服务可以按需的方式具有一定规模,以尽量减少违反服务级别协议的行为,从而减少发生汽车事故的可能性。这一研究脱离了对传统时间序列技术的评估,而最近采用了基于机器学习(ML)的预测托里诺公路交通流量的方法。鉴于选定的预测技术的准确性,建议并评价基于预报的扩大算法,对三种具有严格潜伏要求的截然不同的车辆服务进行一系列规模实验。结果显示,拟议的按比例算法可以节省高达5%的资源,其成本是增加低于0.4%的耐久性违规率。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
专知会员服务
40+阅读 · 2020年9月6日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员