Emerging intelligent embedded devices rely on Deep Neural Networks (DNNs) to be able to interact with the real-world environment. This interaction comes with the ability to retrain DNNs, since environmental conditions change continuously in time. Stochastic Gradient Descent (SGD) is a widely used algorithm to train DNNs by optimizing the parameters over the training data iteratively. In this work, first we present a novel approach to add the training ability to a baseline DNN accelerator (inference only) by splitting the SGD algorithm into simple computational elements. Then, based on this heuristic approach we propose TaxoNN, a light-weight accelerator for DNN training. TaxoNN can easily tune the DNN weights by reusing the hardware resources used in the inference process using a time-multiplexing approach and low-bitwidth units. Our experimental results show that TaxoNN delivers, on average, 0.97% higher misclassification rate compared to a full-precision implementation. Moreover, TaxoNN provides 2.1$\times$ power saving and 1.65$\times$ area reduction over the state-of-the-art DNN training accelerator.
翻译:新兴智能嵌入装置依靠深神经网络(DNN)才能与现实世界环境互动。这种互动与对 DNNS进行再培训的能力有关,因为环境条件在时间上不断变化。Stochatistic Gradient Emprole (SGD) 是一种广泛使用的算法,用于培训DNS, 优化培训数据中的参数。在这项工作中,我们首先提出了一个新颖的方法,将培训能力添加到DNNN 基线加速器(仅推断),将 SGD 算法分割成简单的计算要素。然后,根据这种超常方法,我们提议为 DNNN 培训建立一个轻量级加速器。TaxoNNN 能够使用时间上的混合法和低维维单位,使用在推论过程中使用的硬件资源,轻松调DNNN的重量。我们的实验结果显示,DGNN提供平均0.97 %的错误分类率,比全精度执行率高。此外,CATNONNNP提供2.1美元/time$DNSP 节能和1.65\timeator 区域。