We propose a category-theoretic definition of retrodiction and use it to exhibit a time-reversal symmetry for all quantum channels. We do this by introducing retrodiction families and functors, which capture many intuitive properties that retrodiction should satisfy and are general enough to encompass both classical and quantum theories alike. Classical Bayesian inversion and all rotated and averaged Petz recovery maps define retrodiction families in our sense. However, averaged rotated Petz recovery maps, including the universal recovery map of Junge--Sutter--Renner--Wilde--Winter, do not define retrodiction functors, since they fail to satisfy some compositionality properties. Among all the examples we found of retrodiction families, the original Petz recovery map is the only one that defines a retrodiction functor. In addition, retrodiction functors exhibit an inferential time-reversal symmetry consistent with the standard formulation of quantum theory. The existence of such a retrodiction functor seems to be in stark contrast to the many no-go results on time-reversal symmetry for quantum channels. One of the main reasons is because such works defined time-reversal symmetry on the category of quantum channels alone, whereas we define it on the category of quantum states \textit{and} quantum channels. This fact further illustrates the importance of a prior in time-reversal symmetry.
翻译:我们提出了一个追溯性的分类理论定义, 并用它来展示所有量子频道的时间- 逆向对称性。 我们这样做的方法是引入回溯性家属和真菌, 以捕捉许多回溯性属性, 这些直觉性属性应该满足, 并且具有一般性, 足以同时包含古典和量子理论。 古典的巴伊西亚反转以及所有旋转和平均的佩茨恢复性地图都定义着我们意义上的回溯性系。 但是, 平均旋转的佩茨恢复性图, 包括正经- 撒特- 伦纳- 威德- 威德- 威特的回溯性回溯性地图, 并不定义回溯性真菌的真菌, 因为它们不能满足某些构成性属性。 在我们发现的关于回溯性家族的所有例子中, 最初的佩茨恢复性图是唯一一个定义回溯性回溯性回溯性谱的。 此外, 回溯性真菌复性谱性时间- 逆性对准性谱理学的标准公式。 这种回溯性真性复性复性复性复性复性复性复性复性复性复性调真性图的存在似乎性地图的存在似乎性地在时间- 在时间- 时间- 时间- 时间- 时间- 度轨道上, 我们定义了对准性测定性测定性测定性轨道上的轨线段段段段段段段段段段内, 。