In this paper, we first introduce a simulator of cases estimates of incurred losses, called `SPLICE` (Synthetic Paid Loss and Incurred Cost Experience). In three modules, case estimates are simulated in continuous time, and a record is output for each individual claim. Revisions for the case estimates are also simulated as a sequence over the lifetime of the claim, in a number of different situations. Furthermore, some dependencies in relation to case estimates of incurred losses are incorporated, particularly recognizing certain properties of case estimates that are found in practice. For example, the magnitude of revisions depends on ultimate claim size, as does the distribution of the revisions over time. Some of these revisions occur in response to occurrence of claim payments, and so `SPLICE` requires input of simulated per-claim payment histories. The claim data can be summarized by accident and payment "periods" whose duration is an arbitrary choice (e.g. month, quarter, etc.) available to the user. `SPLICE` is built on an existing simulator of individual claim experience called `SynthETIC` available on CRAN (Avanzi et al., 2021a,b), which offers flexible modelling of occurrence, notification, as well as the timing and magnitude of individual partial payments. This is in contrast with the incurred losses, which constitute the additional contribution of `SPLICE`. The inclusion of incurred loss estimates provides a facility that almost no other simulators do.


翻译:在本文中,我们首先采用一个模拟损失估计案例的模拟器,称为`综合支付损失和成本损失经验';在三个模块中,案件估计是连续时间模拟的,每个索赔都有记录;对案件估计的修订也是模拟的,是若干不同情况下索赔周期的序列;此外,还结合了与发生损失估计案件有关的一些依赖性,特别是承认实践中发现的某些案件估计的性质;例如,修订的程度取决于最终索赔规模,以及修订的分配情况,其中部分修订是连续进行,对索赔付款的发生情况进行模拟,因此,“软件”要求输入模拟的每项索赔付款历史;索赔数据可以由事故和付款“期间”加以总结,其期限是用户任意选择的(例如月、季度等)。 " SPICE " 以现有的个人索赔模拟经验为基础,称为`联合支付损失规模,几乎是随时间推移的分布。

0
下载
关闭预览

相关内容

【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年10月30日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
清华大学研究生教育
3+阅读 · 2018年6月30日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年10月30日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员