Systemic risk measures such as CoVaR, CoES and MES are widely-used in finance, macroeconomics and by regulatory bodies. Despite their importance, we show that they fail to be elicitable and identifiable. This renders forecast comparison and validation, commonly summarised as `backtesting', impossible. The novel notion of \emph{multi-objective elicitability} solves this problem. Specifically, we propose Diebold--Mariano type tests utilising two-dimensional scores equipped with the lexicographic order. We illustrate the test decisions by an easy-to-apply traffic-light approach. We apply our traffic-light approach to DAX~30 and S\&P~500 returns, and infer some recommendations for regulators.
翻译:CoVaR、CoES和MES等系统性风险措施在金融、宏观经济和监管机构中广泛使用,尽管重要,但我们表明,这些措施未能产生并可以识别。这使得预测的比较和验证成为不可能,通常被概括为“再测试”。新颖的\emph{多重目标可检测性概念解决这个问题。具体地说,我们建议Diebold-Mariano型测试使用配有地名录的二维分数。我们用易于应用的交通灯光方法来说明测试决定。我们用交通灯光方法对DAX~30和S ⁇ P~500回报进行应用,并向监管者提出一些建议。