In this paper, we consider fine-grained image object detection in resource-constrained cases such as edge computing. Deep learning (DL), namely learning with deep neural networks (DNNs), has become the dominating approach to object detection. To achieve accurate fine-grained detection, one needs to employ a large enough DNN model and a vast amount of data annotations, which brings a challenge for using modern DL object detectors in resource-constrained cases. To this end, we propose an approach, which leverages commonsense knowledge to assist a coarse-grained object detector to get accurate fine-grained detection results. Specifically, we introduce a commonsense knowledge inference module (CKIM) to process coarse-grained lables given by a benchmark DL detector to produce fine-grained lables. We consider both crisp-rule and fuzzy-rule based inference in our CKIM; the latter is used to handle ambiguity in the target semantic labels. We implement our method based on several modern DL detectors, namely YOLOv4, Mobilenetv3-SSD and YOLOv7-tiny. Experiment results show that our approach outperforms benchmark detectors remarkably in terms of accuracy, model size and processing latency.
翻译:在本文中,我们考虑在诸如边缘计算等资源受限制的案例中进行微粒图像对象探测。深度学习(DL),即与深神经网络(DNNS)学习,已经成为物体探测的主要方法。为了实现精确精度探测,需要使用一个足够大的DNN模型和大量的数据说明,这对在资源受限制的案例中使用现代DL物体探测器带来挑战。为此,我们提议一种方法,利用普通知识帮助粗糙的物体探测器获得精确精度探测结果。具体地说,我们采用了一种普通知识推断模块(CKIM),用于处理基准DL探测器提供的粗度激光实验室,以产生精度激光实验室。我们考虑在资源受限制的案例中使用现代DL物体探测器的方法和模糊值规则。为此,我们采用了一种方法,即YOLOVIV4, 实验性网络3, 以若干现代的L探测器为模型,即YOLOVVSDSDSD, 和Airvicol-SD, 显示我们基准的精确度处理结果。</s>