Regression branch of Machine Learning purely focuses on prediction of continuous values. The supervised learning branch has many regression based methods with parametric and non-parametric learning models. In this paper we aim to target a very subtle point related to distance based regression model. The distance based model used is K-Nearest Neighbors Regressor which is a supervised non-parametric method. The point that we want to prove is the effect of k parameter of the model and its fluctuations affecting the metrics. The metrics that we use are Root Mean Squared Error and R-Squared Goodness of Fit with their visual representation of values with respect to k values.
翻译:机器学习的回归分支纯粹侧重于连续值的预测。 受监督的学习分支有许多基于回归的方法, 包括参数和非参数学习模型。 在本文中, 我们的目标是瞄准一个与远程回归模型有关的非常微妙的点。 使用的远程模型是 K- 近距离邻居回归模型, 这是一种受监督的非参数方法。 我们希望证明的是模型的 k 参数的影响及其影响度量的波动。 我们使用的尺度是根中平方误差和R- 定界质量, 符合与 k 值有关的数值的直观表示。