Multivariate categorical data are routinely collected in many application areas. As the number of cells in the table grows exponentially with the number of variables, many or even most cells will contain zero observations. This severe sparsity motivates appropriate statistical methodologies that effectively reduce the number of free parameters, with penalized log-linear models and latent structure analysis being popular options. This article proposes a fundamentally new class of methods, which we refer to as Mixture of Log Linear models (mills). Combining latent class analysis and log-linear models, mills defines a novel Bayesian methodology to model complex multivariate categorical with flexibility and interpretability. Mills is shown to have key advantages over alternative methods for contingency tables in simulations and an application investigating the relation among suicide attempts and empathy.


翻译:在许多应用领域,经常收集多变量绝对数据。由于表中的单元格数随着变量数的成倍增长,许多甚至大多数单元格将包含零观测。这种严重的宽度促使采用适当的统计方法,有效减少自由参数数,而受惩罚的日志线性模型和潜在结构分析是受欢迎的选择。本条款提出了一种全新的方法类别,我们称之为日志线性模型(Mixture of Log Linear 模型(Mills)的混合体。结合潜伏类分析和日志线性模型,磨坊界定了一种新型的贝叶斯方法,用以模拟复杂的多变量绝对性,具有灵活性和可解释性。在模拟和调查自杀企图和同情感之间关系的应用中,Mills对应急表的替代方法具有关键优势。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Learning to Importance Sample in Primary Sample Space
Arxiv
6+阅读 · 2018年1月29日
Arxiv
3+阅读 · 2017年12月18日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Learning to Importance Sample in Primary Sample Space
Arxiv
6+阅读 · 2018年1月29日
Arxiv
3+阅读 · 2017年12月18日
Arxiv
3+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员