Achieving network resilience in terms of attack tolerance and service availability is critically important for Internet of Vehicles (IoV) networks where vehicles require assistance in sensitive and safety-critical applications like driving. It is particularly challenging in time-varying conditions of IoV traffic. In this paper, we study an attack-resilient optimal service placement problem to ensure disruption-free service availability to the users in edge-enabled IoV network. Our work aims to improve the user experience while minimizing the delay and simultaneously considering efficient utilization of limited edge resources. First, an optimal service placement is performed while considering traffic dynamicity and meeting the service requirements with the use of a deep reinforcement learning (DRL) framework. Next, an optimal secondary mapping and service recovery placements are performed to account for the attacks/failures at the edge. The use of DRL framework helps to adapt to dynamically varying IoV traffic and service demands. In this work, we develop three ILP models and use them in the DRL-based framework to provide attack-resilient service placement and ensure service availability with efficient network performance. Extensive numerical experiments are performed to demonstrate the effectiveness of the proposed approach.
翻译:在攻击容忍度和服务提供方面实现网络复原力对于车辆的互联网网络至关重要,因为车辆在驾驶等敏感和安全关键应用方面需要援助,这在机动车辆交通的时空条件下尤其具有挑战性。在本文件中,我们研究一个具有攻击弹性的最佳服务安置问题,以确保向边缘驱动的机动车辆网络的用户提供无干扰服务。我们的工作旨在改进用户的经验,同时尽量减少延迟,并同时考虑有效利用有限的边缘资源。首先,在使用深度强化学习框架(DRL),考虑交通动态和满足服务要求的同时,提供最佳服务安排。接着,进行最佳二级测绘和服务恢复安排,以说明边缘的攻击/故障情况。使用DRL框架有助于适应动态变化的机动车辆交通和服务需求。在这项工作中,我们开发了三个国际铁路项目模型,并在以攻击性弹性服务为基础的框架中使用这些模型,以提供具有攻击性的服务安排,并确保以高效的网络性运行方式提供服务。进行了广泛的数字实验,以证明拟议方法的有效性。