Compressed video action recognition has recently drawn growing attention, since it remarkably reduces the storage and computational cost via replacing raw videos by sparsely sampled RGB frames and compressed motion cues (e.g., motion vectors and residuals). However, this task severely suffers from the coarse and noisy dynamics and the insufficient fusion of the heterogeneous RGB and motion modalities. To address the two issues above, this paper proposes a novel framework, namely Attentive Cross-modal Interaction Network with Motion Enhancement (MEACI-Net). It follows the two-stream architecture, i.e. one for the RGB modality and the other for the motion modality. Particularly, the motion stream employs a multi-scale block embedded with a denoising module to enhance representation learning. The interaction between the two streams is then strengthened by introducing the Selective Motion Complement (SMC) and Cross-Modality Augment (CMA) modules, where SMC complements the RGB modality with spatio-temporally attentive local motion features and CMA further combines the two modalities with selective feature augmentation. Extensive experiments on the UCF-101, HMDB-51 and Kinetics-400 benchmarks demonstrate the effectiveness and efficiency of MEACI-Net.
翻译:压缩的视频行动识别最近引起人们越来越多的注意,因为它显著降低了储存和计算成本,因为通过以稀有抽样的 RGB 框架和压缩运动提示(如运动矢量和残留物)取代原始视频(如运动矢量和压缩运动提示)来取代原始视频,从而显著降低了存储和计算成本;然而,这项任务由于粗糙和噪音的动态动态以及各种RGB和运动模式的融合不足而严重受损;为了解决上述两个问题,本文件提议了一个新颖的框架,即增强运动的动态跨模式(MEACI-Net),它遵循双流结构,即RGB模式和运动模式的结构。特别是,运动流采用了一个带有分层模块的多层块,以强化代表性学习。然后,通过引入选择性运动补充(SMC)和跨模式强化(CMA)模块,使SMC与RGB模式相补充,同时添加了Pastio-minorative-porative 和CMA进一步将两种模式与选择性的特性增强结合起来。关于UCF-101、HMD-M-B 和KIN-MIN-I 的效能基准的大规模实验。