The use of Automatic speech recognition (ASR) interfaces have become increasingly popular in daily life for use in interaction and control of electronic devices. The interfaces currently being used are not feasible for a variety of users such as those suffering from a speech disorder, locked-in syndrome, paralysis or people with utmost privacy requirements. In such cases, an interface that can identify envisioned speech using electroencephalogram (EEG) signals can be of great benefit. Various works targeting this problem have been done in the past. However, there has been limited work in identifying the frequency bands ($\delta, \theta, \alpha, \beta, \gamma$) of the EEG signal that contribute towards envisioned speech recognition. Therefore, in this work, we aim to analyze the significance of different EEG frequency bands and signals obtained from different lobes of the brain and their contribution towards recognizing envisioned speech. Signals obtained from different lobes and bandpass filtered for different frequency bands are fed to a spatio-temporal deep learning architecture with Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). The performance is evaluated on a publicly available dataset comprising of three classification tasks - digit, character and images. We obtain a classification accuracy of $85.93\%$, $87.27\%$ and $87.51\%$ for the three tasks respectively. The code for the implementation has been made available at https://github.com/ayushayt/ImaginedSpeechRecognition.


翻译:自动语音识别(ASR)界面的使用在日常生活中越来越受欢迎,用于互动和控制电子设备。目前使用的界面对于各种用户来说是不可行的,例如那些患有语音失常、锁定综合症、瘫痪或最隐私要求的人;在这种情况下,一个能够使用电子脑图信号识别语音预言的界面可能大有裨益。过去曾针对这一问题开展过各种工作。然而,在确定EEEG信号的频段((delta,\theta,\alpha,\beta,\gamma$)方面开展的工作有限,这些频段有助于预期的语音识别。因此,在这项工作中,我们旨在分析不同EEEG频带和从大脑不同部获得的信号的重要性,以及它们对语音认知的贡献。从不同地方和为不同频率波段过滤的频段获得的信号,但与Convoal Neur网络(N)和Long-Teral-delmaial main 信号的频段(LS7)的频段和长端-直径图像的代码,我们用三种可获取的代码来评估。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员