We present some reductions between optimization problems for undirected conservative graphs, that is, edge-weighted graphs without negative cycles. We settle the complexity of some of them, and exhibit some remaining challenges. Our key result is that the shortest odd path problem between two given vertices, and its variants, such as the shortest odd cycle problem through a given vertex, turn out to be NP-hard, deciding a long-standing question by Lov\'asz (Open Problem 27 in Schrijver's book, 2003), in the negative. The complexity of finding a shortest odd cycle for conservative weights or of finding an odd $T$-join of minimum cardinality remains open. We finally relate these problems to relevant, solved or hopeful variants.
翻译:在非定向保守图表(即没有负周期的边缘加权图表)的优化问题之间,我们提出了一些削减。我们解决了其中一些问题的复杂性,并展示了一些仍然存在的挑战。我们的主要结果是,两种给定的脊椎及其变体之间最短的奇特路径问题,例如通过给定的脊椎造成的最短奇特周期问题,最终变成了NP-hard,决定了Lov\'asz的长期问题(Schrijver的书中的第27号公开问题,2003年)为负数。找到一个最短的保守重量奇特周期或找到一个奇特的美元和奇特的最小基点的复杂性仍然存在。我们最终将这些问题与相关、解决或有希望的变体联系起来。