This paper improves the state-of-the-art rate of a first-order algorithm for solving entropy regularized optimal transport. The resulting rate for approximating the optimal transport (OT) has been improved from $\widetilde{{O}}({n^{2.5}}/{\epsilon})$ to $\widetilde{{O}}({n^2}/{\epsilon})$, where $n$ is the problem size and $\epsilon$ is the accuracy level. In particular, we propose an accelerated primal-dual stochastic mirror descent algorithm with variance reduction. Such special design helps us improve the rate compared to other accelerated primal-dual algorithms. We further propose a batch version of our stochastic algorithm, which improves the computational performance through parallel computing. To compare, we prove that the computational complexity of the Stochastic Sinkhorn algorithm is $\widetilde{{O}}({n^2}/{\epsilon^2})$, which is slower than our accelerated primal-dual stochastic mirror algorithm. Experiments are done using synthetic and real data, and the results match our theoretical rates. Our algorithm may inspire more research to develop accelerated primal-dual algorithms that have rate $\widetilde{{O}}({n^2}/{\epsilon})$ for solving OT.


翻译:本文改进了解决 entropy 正规化最佳运输的第一阶算法的先进速度。 因此, 接近最佳运输( OT) 的先进速度已经从 $@O ⁇ ( {\\ 2.5 ⁇ / ~ ~ ~ ~) 美元提高到 $\ 全局的 O ⁇ ( ({ \ 2} / ~ ~ ~ ~ ) 美元, 美元是问题大小, 美元是准确程度。 特别是, 我们提议加速初等和相近镜底偏移算法, 并减少差异。 这种特殊设计有助于我们提高最佳运输( OT) 的速度。 我们进一步提议了我们的随机算法的批量版本, 通过平行计算来提高计算绩效。 相比之下, 我们证明Sinkshinkhorn 算法的计算复杂性是 $\ $\\ ( \\ 2} ({ \ \ / ~ ~ ~ } { ~ } ( ~ ~ } } 美元, 我们提议加速的初等镜底级算算算算算算算算算法, 我们的模拟算算算算算算算算算算算算算算算得得更慢。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月16日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
0+阅读 · 2023年3月13日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员