Multiple Object Tracking (MOT) detects the trajectories of multiple objects given an input video. It has become more and more important for various research and industry areas, such as cell tracking for biomedical research and human tracking in video surveillance. Most existing algorithms depend on the uniqueness of the object's appearance, and the dominating bipartite matching scheme ignores the speed smoothness. Although several methods have incorporated the velocity smoothness for tracking, they either fail to pursue global smooth velocity or are often trapped in local optimums. We focus on the general MOT problem regardless of the appearance and propose an appearance-free tripartite matching to avoid the irregular velocity problem of the bipartite matching. The tripartite matching is formulated as maximizing the likelihood of the state vectors constituted of the position and velocity of objects, which results in a chain-dependent structure. We resort to the dynamic programming algorithm to find such a maximum likelihood estimate. To overcome the high computational cost induced by the vast search space of dynamic programming when many objects are to be tracked, we decompose the space by the number of disappearing objects and propose a reduced-space approach by truncating the decomposition. Extensive simulations have shown the superiority and efficiency of our proposed method, and the comparisons with top methods on Cell Tracking Challenge also demonstrate our competence. We also applied our method to track the motion of natural killer cells around tumor cells in a cancer study.\footnote{The source code is available on \url{https://github.com/szcf-weiya/TriMatchMOT}


翻译:多物体跟踪(MOT) 检测多个对象的轨迹, 给输入视频 。 它对于各种研究和行业领域越来越重要, 比如生物医学研究的细胞跟踪和视频监控中的人类跟踪。 大多数现有的算法取决于对象外观的独特性, 而主导性双部匹配方案忽视了速度平滑性。 虽然有好几种方法已经包括了速度平稳的跟踪, 但它们要么未能追求全球平稳速度, 或往往被困在本地最佳程序中 。 我们关注一般的 MOT 问题, 并提议一个不露面的三方匹配, 以避免双方匹配的不规则速度问题。 三方匹配的设定是最大限度地增加由物体外观和速度构成的状态矢量的可能性, 从而产生一个取决于链状结构的结构。 我们利用动态的编程算法来找到这种最大的可能性估计值。 许多对象要跟踪, 要克服巨大的动态编程搜索空间所引发的高计算成本, 我们用消失的物体数来解析空间, 提议在双向匹配的天体匹配速度问题中 。 我们的轨图图图上显示我们移动的轨道 。

0
下载
关闭预览

相关内容

标跟踪是指:给出目标在跟踪视频第一帧中的初始状态(如位置,尺寸),自动估计目标物体在后续帧中的状态。 目标跟踪分为单目标跟踪和多目标跟踪。 人眼可以比较轻松的在一段时间内跟住某个特定目标。但是对机器而言,这一任务并不简单,尤其是跟踪过程中会出现目标发生剧烈形变、被其他目标遮挡或出现相似物体干扰等等各种复杂的情况。过去几十年以来,目标跟踪的研究取得了长足的发展,尤其是各种机器学习算法被引入以来,目标跟踪算法呈现百花齐放的态势。2013年以来,深度学习方法开始在目标跟踪领域展露头脚,并逐渐在性能上超越传统方法,取得巨大的突破。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
9+阅读 · 2018年3月10日
VIP会员
相关VIP内容
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员