Multiple Object Tracking (MOT) detects the trajectories of multiple objects given an input video. It has become more and more important for various research and industry areas, such as cell tracking for biomedical research and human tracking in video surveillance. Most existing algorithms depend on the uniqueness of the object's appearance, and the dominating bipartite matching scheme ignores the speed smoothness. Although several methods have incorporated the velocity smoothness for tracking, they either fail to pursue global smooth velocity or are often trapped in local optimums. We focus on the general MOT problem regardless of the appearance and propose an appearance-free tripartite matching to avoid the irregular velocity problem of the bipartite matching. The tripartite matching is formulated as maximizing the likelihood of the state vectors constituted of the position and velocity of objects, which results in a chain-dependent structure. We resort to the dynamic programming algorithm to find such a maximum likelihood estimate. To overcome the high computational cost induced by the vast search space of dynamic programming when many objects are to be tracked, we decompose the space by the number of disappearing objects and propose a reduced-space approach by truncating the decomposition. Extensive simulations have shown the superiority and efficiency of our proposed method, and the comparisons with top methods on Cell Tracking Challenge also demonstrate our competence. We also applied our method to track the motion of natural killer cells around tumor cells in a cancer study.\footnote{The source code is available on \url{https://github.com/szcf-weiya/TriMatchMOT}
翻译:多物体跟踪(MOT) 检测多个对象的轨迹, 给输入视频 。 它对于各种研究和行业领域越来越重要, 比如生物医学研究的细胞跟踪和视频监控中的人类跟踪。 大多数现有的算法取决于对象外观的独特性, 而主导性双部匹配方案忽视了速度平滑性。 虽然有好几种方法已经包括了速度平稳的跟踪, 但它们要么未能追求全球平稳速度, 或往往被困在本地最佳程序中 。 我们关注一般的 MOT 问题, 并提议一个不露面的三方匹配, 以避免双方匹配的不规则速度问题。 三方匹配的设定是最大限度地增加由物体外观和速度构成的状态矢量的可能性, 从而产生一个取决于链状结构的结构。 我们利用动态的编程算法来找到这种最大的可能性估计值。 许多对象要跟踪, 要克服巨大的动态编程搜索空间所引发的高计算成本, 我们用消失的物体数来解析空间, 提议在双向匹配的天体匹配速度问题中 。 我们的轨图图图上显示我们移动的轨道 。