The cross section is one of the most important physical quantities in high-energy physics and the most time consuming to compute. While machine learning has proven to be highly successful in numerical calculations in high-energy physics, analytical calculations using machine learning are still in their infancy. In this work, we use a sequence-to-sequence transformer model to compute a key element of the cross section calculation, namely, the squared amplitude of an interaction. We show that a transformer model is able to predict correctly 89.0% and 99.4% of squared amplitudes of QCD and QED processes, respectively. We discuss the performance of the current model, its limitations and possible future directions for this work.
翻译:横截段是高能物理中最重要的物理数量之一,是计算最费时的时间。虽然机器学习在高能物理中被证明在计算数字方面非常成功,但使用机器学习的分析计算仍然处于萌芽阶段。在这项工作中,我们使用一个序列到序列变压器模型来计算横截段计算的一个关键要素,即互动的平方振幅。我们显示,变压器模型能够正确预测QCD和QED平方振幅的89.0%和99.4%。我们讨论了当前模型的性能、其局限性以及这项工作可能的未来方向。