In this paper, we investigate space-time tradeoffs for answering conjunctive queries with access patterns (CQAPs). The goal is to create a space-efficient data structure in an initial preprocessing phase and use it for answering (multiple) queries in an online phase. Previous work has developed data structures that trades off space usage for answering time for queries of practical interest, such as the path and triangle query. However, these approaches lack a comprehensive framework and are not generalizable. Our main contribution is a general algorithmic framework for obtaining space-time tradeoffs for any CQAP. Our framework builds upon the $\PANDA$ algorithm and tree decomposition techniques. We demonstrate that our framework captures all state-of-the-art tradeoffs that were independently produced for various queries. Further, we show surprising improvements over the state-of-the-art tradeoffs known in the existing literature for reachability queries.


翻译:在本文中,我们研究了应对查询访问模式(CQAPs)进行时空权衡的方法。目标是在初始预处理阶段创建一个空间高效的数据结构,并在在线阶段使用它来回答(多个)查询。之前的工作已经开发了数据结构来为实际查询(例如路径和三角形查询)提供时间和空间的权衡。然而,这些方法缺乏一个全面的框架并且不具可泛化性。我们的主要贡献是一个通用的算法框架,用于获取任何CQAP的时空权衡。我们的框架基于$\PANDA$算法和树分解技术。我们展示了我们的框架涵盖了独立产生的各种查询的最新现有时空权衡。此外,我们展示了对现有文献中已知最优时空权衡的可达性查询的惊人改进。

0
下载
关闭预览

相关内容

【NeurIPS2020】点针图网络,Pointer Graph Networks
专知会员服务
40+阅读 · 2020年9月27日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月26日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员