$ \newcommand{\SVP}{\textsf{SVP}} \newcommand{\CVP}{\textsf{CVP}} \newcommand{\eps}{\varepsilon} $We show a number of reductions between the Shortest Vector Problem and the Closest Vector Problem over lattices in different $\ell_p$ norms ($\SVP_p$ and $\CVP_p$ respectively). Specifically, we present the following $2^{\eps m}$-time reductions for $1 \leq p \leq q \leq \infty$, which all increase the rank $n$ and dimension $m$ of the input lattice by at most one: $\bullet$ a reduction from $\widetilde{O}(1/\eps^{1/p})\gamma$-approximate $\SVP_q$ to $\gamma$-approximate $\SVP_p$; $\bullet$ a reduction from $\widetilde{O}(1/\eps^{1/p}) \gamma$-approximate $\CVP_p$ to $\gamma$-approximate $\CVP_q$; and $\bullet$ a reduction from $\widetilde{O}(1/\eps^{1+1/p})$-$\CVP_q$ to $(1+\eps)$-unique $\SVP_p$ (which in turn trivially reduces to $(1+\eps)$-approximate $\SVP_p$). The last reduction is interesting even in the case $p = q$. In particular, this special case subsumes much prior work adapting $2^{O(m)}$-time $\SVP_p$ algorithms to solve $O(1)$-approximate $\CVP_p$. In the (important) special case when $p = q$, $1 \leq p \leq 2$, and the $\SVP_p$ oracle is exact, we show a stronger reduction, from $O(1/\eps^{1/p})\text{-}\CVP_p$ to (exact) $\SVP_p$ in $2^{\eps m}$ time. For example, taking $\eps = \log m/m$ and $p = 2$ gives a slight improvement over Kannan's celebrated polynomial-time reduction from $\sqrt{m}\text{-}\CVP_2$ to $\SVP_2$. We also note that the last two reductions can be combined to give a reduction from approximate-$\CVP_p$ to $\SVP_q$ for any $p$ and $q$, regardless of whether $p \leq q$ or $p > q$. Our techniques combine those from the recent breakthrough work of Eisenbrand and Venzin (which showed how to adapt the current fastest known algorithm for these problems in the $\ell_2$ norm to all $\ell_p$ norms) together with sparsification-based techniques.


翻译:$新指令{VP}{Newcommand\SVP}}{Newcommand\CVP}$1\PFTF}$2\CFTF{CP}\新指令_Eptsunvaresilon}$我们显示在最短的矢量问题和最接近的矢量问题之间,在不同的 $_pt 规范下(\SVP_p$和$CP_P}具体地,我们提出以下的2美元降幅,在1\leqp m}美元美元PP$ 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元 美元

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
写缓冲(change buffer),这次彻底懂了!!!
架构师之路
5+阅读 · 2019年6月25日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
《科学》(20190517出版)一周论文导读
科学网
5+阅读 · 2019年5月19日
已删除
将门创投
5+阅读 · 2019年4月15日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月3日
VIP会员
相关资讯
写缓冲(change buffer),这次彻底懂了!!!
架构师之路
5+阅读 · 2019年6月25日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
《科学》(20190517出版)一周论文导读
科学网
5+阅读 · 2019年5月19日
已删除
将门创投
5+阅读 · 2019年4月15日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
Top
微信扫码咨询专知VIP会员