In the adversarially robust streaming model, a stream of elements is presented to an algorithm and is allowed to depend on the output of the algorithm at earlier times during the stream. In the classic insertion-only model of data streams, Ben-Eliezer et. al. (PODS 2020, best paper award) show how to convert a non-robust algorithm into a robust one with a roughly $1/\varepsilon$ factor overhead. This was subsequently improved to a $1/\sqrt{\varepsilon}$ factor overhead by Hassidim et. al. (NeurIPS 2020, oral presentation), suppressing logarithmic factors. For general functions the latter is known to be best-possible, by a result of Kaplan et. al. (CRYPTO 2021). We show how to bypass this impossibility result by developing data stream algorithms for a large class of streaming problems, with no overhead in the approximation factor. Our class of streaming problems includes the most well-studied problems such as the $L_2$-heavy hitters problem, $F_p$-moment estimation, as well as empirical entropy estimation. We substantially improve upon all prior work on these problems, giving the first optimal dependence on the approximation factor. As in previous work, we obtain a general transformation that applies to any non-robust streaming algorithm and depends on the so-called flip number. However, the key technical innovation is that we apply the transformation to what we call a difference estimator for the streaming problem, rather than an estimator for the streaming problem itself. We then develop the first difference estimators for a wide range of problems. Our difference estimator methodology is not only applicable to the adversarially robust model, but to other streaming models where temporal properties of the data play a central role. (Abstract shortened to meet arXiv limit.)
翻译:在对抗性强的流模式中, 将元素流向一个算法, 并允许在流中早期取决于算法输出。 在典型的单插入式数据流模型中, Ben- Eliezer et al. (PODS 2020, 最佳纸质授标) 显示如何将非紫色算法转换成一个坚固的算法, 大约为 $/\\ varepsilon 系数管理。 这后来改进为 $/\ qrt lvarepsilon} 。 Hassidimim 等人( NeurIPS 2020, 口述演示), 压制对对对对正对流因素的输出。 我们的变换变, 最深的变换包括最深的调变换, 最明显的变换, 最明显的变换, 最明显的变换, 最明显的变现的变换, 也就是我们之前的变换, 最精确的变换, 最明显的变现的变换, 也就是我们之前的变现的变现的变现方法, 的变现, 我们的变现的变现的变现, 的变的变现, 的变现的变现的变的变现的变的变的变现的变的变现, 的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变。