Growth of science is a prevalent issue in science of science studies. In recent years, two new bibliographic databases have been introduced which can be used to study growth processes in science from centuries back: Dimensions from Digital Science and Microsoft Academic. In this study, we used publication data from these new databases and added publication data from two established databases (Web of Science from Clarivate Analytics and Scopus from Elsevier) to investigate scientific growth processes from the beginning of the modern science system until today. We estimated regression models that included simultaneously the publication counts from the four databases. The results of the unrestricted growth of science calculations show that the overall growth rate amounts to 4.10% with a doubling time of 17.3 years. As the comparison of various segmented regression models in the current study revealed, the model with five segments fits the publication data best. We demonstrated that these segments with different growth rates can be interpreted very well, since they are related to either phases of economic (e.g., industrialization) and / or political developments (e.g., Second World War). In this study, we additionally analyzed scientific growth in two broad fields (Physical and Technical Sciences as well as Life Sciences) and the relationship of scientific and economic growth in UK. The comparison between the two fields revealed only slight differences. The comparison of the British economic and scientific growth rates showed that the economic growth rate is slightly lower than the scientific growth rate.


翻译:科学增长是科学研究科学的一个普遍问题。近年来,我们引入了两个新的书目数据库,可以用来研究几个世纪前的科学增长过程:数字科学和微软学术的层面。在本研究中,我们使用这些新数据库的出版数据,并从两个已建立的数据库(Clarivate Analytics科学网和Elsevier的Scopus科学网)增加出版物数据,以调查从现代科学系统开始到今天的科学增长过程。我们估计了包含四个数据库出版数字的回归模型。科学的无限制增长结果表明,总体增长率达到4.10 %, 翻了一番,17.3年。通过对当前研究中各种分层回归模型的比较,五个部分最适合出版数据。我们证明,这些增长率不同的部分可以很好地加以解释,因为它们与经济(例如工业化)和/或政治发展(例如第二次世界大战)两个阶段同时进行。在这个研究中,我们进一步分析了两个广泛的科学增长领域(即物理学和科技增长速度之间的细微差距)的科学增长和英国经济增长率。我们进一步分析了两个领域的科学增长率。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【实用书】数据科学基础,484页pdf,Foundations of Data Science
专知会员服务
118+阅读 · 2020年5月28日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月5日
VIP会员
相关VIP内容
相关资讯
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员