The underwater acoustic signals separation is a key technique for the underwater communications. The existing methods are mostly model-based, and could not accurately characterise the practical underwater acoustic communication environment. They are only suitable for binary signal separation, but cannot handle multivariate signal separation. On the other hand, the recurrent neural network (RNN) shows powerful capability in extracting the features of the temporal sequences. Inspired by this, in this paper, we present a data-driven approach for underwater acoustic signals separation using deep learning technology. We use the Bi-directional Long Short-Term Memory (Bi-LSTM) to explore the features of Time-Frequency (T-F) mask, and propose a T-F mask aware Bi-LSTM for signal separation. Taking advantage of the sparseness of the T-F image, the designed Bi-LSTM network is able to extract the discriminative features for separation, which further improves the separation performance. In particular, this method breaks through the limitations of the existing methods, not only achieves good results in multivariate separation, but also effectively separates signals when mixed with 40dB Gaussian noise signals. The experimental results show that this method can achieve a $97\%$ guarantee ratio (PSR), and the average similarity coefficient of the multivariate signal separation is stable above 0.8 under high noise conditions.


翻译:水下声学信号分离是水下通信的关键技术。 现有方法大多以模型为基础, 无法准确描述实际水下声学通信环境的特征。 它们仅适合二进制信号分离, 无法处理多变量信号分离。 另一方面, 经常性神经网络( RNN) 显示在提取时间序列特征方面有很强的能力。 受此启发, 我们在本文件中展示了一种数据驱动方法, 用于使用深层学习技术进行水下声学信号分离。 我们使用双向长期短期内存( Bi- LSTM) 来探索时间- 公平( T- F) 掩码的特性, 并提议使用T- F 掩码来识别 B- LSTM 的双轨信号分离。 利用T- F 图像的稀疏散性, 设计的 B- LSTM 网络可以提取分离特性特征, 从而进一步提高分离性能。 特别是, 这种方法通过现有方法的局限性, 不仅在多变量分离中取得良好结果, 而且在与 40d- PGaus miss mass missional miss miss miss mission 下, 一种稳定的平均保证 。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员