As the size and complexity of models and datasets grow, so does the need for communication-efficient variants of stochastic gradient descent that can be deployed to perform parallel model training. One popular communication-compression method for data-parallel SGD is QSGD (Alistarh et al., 2017), which quantizes and encodes gradients to reduce communication costs. The baseline variant of QSGD provides strong theoretical guarantees, however, for practical purposes, the authors proposed a heuristic variant which we call QSGDinf, which demonstrated impressive empirical gains for distributed training of large neural networks. In this paper, we build on this work to propose a new gradient quantization scheme, and show that it has both stronger theoretical guarantees than QSGD, and matches and exceeds the empirical performance of the QSGDinf heuristic and of other compression methods.
翻译:随着模型和数据集的规模和复杂性的扩大和复杂性的提高,对可用于进行平行模式培训的通信效率高的梯度下降变体的需要也随之增加。数据平行SGD的一种流行的通信压缩法是QSGD(Alistrah等人,2017年),它量化和编码梯度,以减少通信成本。QSGD的基线变体提供了强有力的理论保障,然而,出于实际目的,作者们提出了一种我们称之为QSGDinf的超常变体,它显示了在大型神经网络的分布培训中所取得的令人印象深刻的经验性收益。在本文件中,我们以这项工作为基础提出一个新的梯度四分化计划,并表明它既有比QSGD的更强大的理论保障,而且与QSGDinf的超自然法和其他压缩方法的实验性能相匹配和超过。