Nowadays, gathering high-quality training data from multiple data controllers with privacy preservation is a key challenge to train high-quality machine learning models. The potential solutions could dramatically break the barriers among isolated data corpus, and consequently enlarge the range of data available for processing. To this end, both academia researchers and industrial vendors are recently strongly motivated to propose two main-stream folders of solutions: 1) Secure Multi-party Learning (MPL for short); and 2) Federated Learning (FL for short). These two solutions have their advantages and limitations when we evaluate them from privacy preservation, ways of communication, communication overhead, format of data, the accuracy of trained models, and application scenarios. Motivated to demonstrate the research progress and discuss the insights on the future directions, we thoroughly investigate these protocols and frameworks of both MPL and FL. At first, we define the problem of training machine learning models over multiple data sources with privacy-preserving (TMMPP for short). Then, we compare the recent studies of TMMPP from the aspects of the technical routes, parties supported, data partitioning, threat model, and supported machine learning models, to show the advantages and limitations. Next, we introduce the state-of-the-art platforms which support online training over multiple data sources. Finally, we discuss the potential directions to resolve the problem of TMMPP.
翻译:目前,从多个数据控制器收集高质量培训数据,并保护隐私,是培训高质量机器学习模型的关键挑战。潜在解决方案可以极大地打破孤立的数据集之间的障碍,从而扩大可供处理的数据范围。为此,学术界研究人员和工业供应商最近强烈提出两个主要解决方案文件夹:(1) 安全多党学习(MPL为短期);(2) 联邦学习(FL为短期)。当我们从隐私保护、通信方式、通信间接费用、数据格式、经过培训的模式和应用设想的准确性等方面来评估这两个解决方案时,这两个解决方案具有优势和局限性。我们积极展示研究进展并讨论关于未来方向的洞察力。我们彻底调查这些协议以及MPL和FL的框架。首先,我们界定了对多种数据源的培训机器学习模型和隐私保护(TMMPP为短期 ) 问题。然后,我们将TMPP最近的研究成果与技术路径、支持方、数据分割、威胁模型和支持机器学习模型的模型等方面进行比较,以展示其优势和局限性。最后,我们介绍了ML和FL的优势和局限性。我们讨论了对多种数据源的在线支持。