We propose NNStreamer, a software system that handles neural networks as filters of stream pipelines, applying the stream processing paradigm to deep neural network applications. A new trend with the wide-spread of deep neural network applications is on-device AI. It is to process neural networks on mobile devices or edge/IoT devices instead of cloud servers. Emerging privacy issues, data transmission costs, and operational costs signify the need for on-device AI, especially if we deploy a massive number of devices. NNStreamer efficiently handles neural networks with complex data stream pipelines on devices, significantly improving the overall performance with minimal efforts. Besides, NNStreamer simplifies implementations and allows reusing off-the-shelf media filters directly, which reduces developmental costs significantly. We are already deploying NNStreamer for a wide range of products and platforms, including the Galaxy series and various consumer electronic devices. The experimental results suggest a reduction in developmental costs and enhanced performance of pipeline architectures and NNStreamer. It is an open-source project incubated by Linux Foundation AI, available to the public and applicable to various hardware and software platforms.


翻译:我们提议采用NNStreamer软件系统,将神经网络作为流管过滤器处理神经网络,将流处理模式应用于深神经网络应用; 深度神经网络应用的广度的新趋势是全新装置; 将处理移动设备或边缘/IoT设备上神经网络而不是云服务器上神经网络; 新出现的隐私问题、数据传输成本和运营成本表明需要安装自动智能系统,特别是如果我们部署大量设备。 NNStreamer高效处理设备上复杂数据流管道的神经网络,大大改进总体性能,并尽量减少努力。 此外, NNStreamer简化了实施程序,允许直接使用现成的媒体过滤器,这大大降低了开发成本。 我们已经为广泛的产品和平台,包括银河系列和各种消费者电子设备部署NNSreamer。 实验结果表明,开发成本降低,管道结构和NNStreamer系统结构的性能得到提高,大大改进了总体性能。 NNSreamer是一个开放源项目,由可应用的Linux AI 基础软件和公共硬件平台进行。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年3月11日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
3+阅读 · 2018年12月21日
VIP会员
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员