Designing future IoT ecosystems requires new approaches and perspectives to understand everyday practices. While researchers recognize the importance of understanding social aspects of everyday objects, limited studies have explored the possibilities of combining data-driven patterns with human interpretations to investigate emergent relationships among objects. This work presents Thing Constellation Visualizer (thingCV), a novel interactive tool for visualizing the social network of objects based on their co-occurrence as computed from a large collection of photos. ThingCV enables perspective-changing design explorations over the network of objects with scalable links. Two exploratory workshops were conducted to investigate how designers navigate and make sense of a network of objects through thingCV. The results of eight participants showed that designers were actively engaged in identifying interesting objects and their associated clusters of related objects. The designers projected social qualities onto the identified objects and their communities. Furthermore, the designers changed their perspectives to revisit familiar contexts and to generate new insights through the exploration process. This work contributes a novel approach to combining data-driven models with designerly interpretations of thing constellation towards More-Than Human-Centred Design of IoT ecosystems.


翻译:设计未来的IoT生态系统需要新的方法和视角来了解日常做法。研究人员认识到了解日常物体的社会方面的重要性,但有限的研究探索了将数据驱动模式与人类解释相结合以调查天体间突发关系的可能性。这项工作展示了Thing星座视觉仪(ThingCV),这是一个全新的互动工具,根据从大量收集的相片中得出的相近现象来对天体的社会网络进行可视化。ThingCV使得在具有可扩缩链接的物体网络上进行改变视角的设计探索。进行了两次探索性讲习班,以调查设计者如何通过物体CV对天体网络进行导航和理解。8名参与者的结果表明,设计者积极参与了确定有趣的物体及其相关物体群。设计者将社会品质投放到所查明的物体及其社区上。此外,设计者们改变了他们的观点,以重新审视熟悉的环境,并通过勘探过程产生新的洞察力。这项工作有助于采用新颖的方法,将数据驱动模型与对物体星座的设计解释相结合,以便了解更多-han人类聚焦的IoT生态系统设计。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
35+阅读 · 2021年8月2日
VrR-VG: Refocusing Visually-Relevant Relationships
Arxiv
6+阅读 · 2019年8月26日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员