While feature association to a global map has significant benefits, to keep the computations from growing exponentially, most lidar-based odometry and mapping methods opt to associate features with local maps at one voxel scale. Taking advantage of the fact that surfels (surface elements) at different voxel scales can be organized in a tree-like structure, we propose an octree-based global map of multi-scale surfels that can be updated incrementally. This alleviates the need for recalculating, for example, a k-d tree of the whole map repeatedly. The system can also take input from a single or a number of sensors, reinforcing the robustness in degenerate cases. We also propose a point-to-surfel (PTS) association scheme, continuous-time optimization on PTS and IMU preintegration factors, along with loop closure and bundle adjustment, making a complete framework for Lidar-Inertial continuous-time odometry and mapping. Experiments on public and in-house datasets demonstrate the advantages of our system compared to other state-of-the-art methods. To benefit the community, we release the source code and dataset at https://github.com/brytsknguyen/slict.
翻译:虽然地貌与全球地图的特征关联具有重大好处,可以使计算从成倍增长中避免,但大多数以利达尔为基础的odard 和绘图方法选择将地貌与本地地图在一个 voxel 比例尺上与当地地图联系起来。 我们利用不同 voxel 比例尺上的地表元素(表层元素)可以组织成树状结构,我们建议绘制一个多尺度冲浪全球octrie地图,该地图可以逐步更新。这减轻了重新计算的必要性,例如,整个地图的K-d树需要反复重算。该系统还可以从一个或若干个传感器得到输入,从而增强退化情况下的稳健性。我们还提议了一个点到表面(PTS)联系计划,对PTS和IMU的周期性优化,同时进行环圈关闭和捆绑调整,为Lidar-Inertial连续时间测量和绘图提供一个完整的框架。对公共和内部数据集进行实验,展示了我们系统与其他州-艺术方法相比的优势。为了造福社区,我们在httpslic源码/gymbs/comset上公布源码。