Many problems on data streams have been studied at two extremes of difficulty: either allowing randomized algorithms, in the static setting (where they should err with bounded probability on the worst case stream); or when only deterministic and infallible algorithms are required. Some recent works have considered the adversarial setting, in which a randomized streaming algorithm must succeed even on data streams provided by an adaptive adversary that can see the intermediate outputs of the algorithm. In order to better understand the differences between these models, we study a streaming task called "Missing Item Finding". In this problem, for $r < n$, one is given a data stream $a_1,\ldots,a_r$ of elements in $[n]$, (possibly with repetitions), and must output some $x \in [n]$ which does not equal any of the $a_i$. We prove that, for $r = n^{\Theta(1)}$ and $\delta = 1/\mathrm{poly}(n)$, the space required for randomized algorithms that solve this problem in the static setting with error $\delta$ is $\Theta(\mathrm{polylog}(n))$; for algorithms in the adversarial setting with error $\delta$, $\Theta((1 + r^2 / n) \mathrm{polylog}(n))$; and for deterministic algorithms, $\Theta(r / \mathrm{polylog}(n))$. Because our adversarially robust algorithm relies on free access to a string of $O(r \log n)$ random bits, we investigate a "random start" model of streaming algorithms where all random bits used are included in the space cost. Here we find a conditional lower bound on the space usage, which depends on the space that would be needed for a pseudo-deterministic algorithm to solve the problem. We also prove an $\Omega(r / \mathrm{polylog}(n))$ lower bound for the space needed by a streaming algorithm with $< 1/2^{\mathrm{polylog}(n)}$ error against "white-box" adversaries that can see the internal state of the algorithm, but not predict its future random decisions.


翻译:数据流的许多问题已在两个极端困难的地方进行了研究:要么允许随机化的算法,在静态环境中(在最坏的个案流中,它们应该错误地使用固定的概率);或者只要需要确定性和不可错错的算法。最近的一些工作考虑了对抗性设置,在这个设置中,随机化的流算法必须成功,即使是在能够看到算法的中间输出的适应性对手提供的数据流上。为了更好地了解这些模型之间的差异,我们研究了一个名为“丢失项目查找”的流式任务。在这个设置中,对于 $(n) 来说, 美元(r) 的算法, 美元(r) 美元; 美元(r) 美元(r) 的算法, 美元(r) 美元(r) 的算法运算法(r) 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月5日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
31+阅读 · 2021年3月29日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Arxiv
0+阅读 · 2023年1月5日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
0+阅读 · 2023年1月4日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
31+阅读 · 2021年3月29日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员