Cooperative game theory aims to study how to divide a joint value created by a set of players. These games are often studied through the characteristic function form with transferable utility, which represents the value obtainable by each coalition. In the presence of externalities, there are many ways to define this value. Various models that account for different levels of player cooperation and the influence of external players on coalition value have been studied. Although there are different approaches, typically, the optimistic and pessimistic approaches provide sufficient insights into strategic interactions. This paper clarifies the interpretation of these approaches by providing a unified framework. We show that making sure that no coalition receives more than their (optimistic) upper bounds is always at least as difficult as guaranteeing their (pessimistic) lower bounds. We also show that if externalities are negative, providing these guarantees is always feasible. Then, we explore applications and show how our findings can be applied to derive results from the existing literature.
翻译:暂无翻译