An equitable partition into branchings in a digraph is a partition of the arc set into branchings such that the sizes of any two branchings differ at most by one. For a digraph whose arc set can be partitioned into $k$ branchings, there always exists an equitable partition into $k$ branchings. In this paper, we present two extensions of equitable partitions into branchings in digraphs: those into matching forests in mixed graphs; and into $b$-branchings in digraphs. For matching forests, Kir\'{a}ly and Yokoi (2022) considered a tricriteria equitability based on the sizes of the matching forest, and the matching and branching therein. In contrast to this, we introduce a single-criterion equitability based on the number of covered vertices, which is plausible in the light of the delta-matroid structure of matching forests. While the existence of this equitable partition can be derived from a lemma in Kir\'{a}ly and Yokoi, we present its direct and simpler proof. For $b$-branchings, we define an equitability notion based on the size of the $b$-branching and the indegrees of all vertices, and prove that an equitable partition always exists. We then derive the integer decomposition property of the associated polytopes.
翻译:将公平分区分割成分块, 是一种分弧分割成分支的分割区。 这样, 任何两个分支的大小最多都会因一个而不同。 对于一个分界线, 其弧形可以分割成美元分支, 总是有一个公平分割成美元分支。 与此相反, 我们根据覆盖的垂直数, 将公平分割扩大成分块: 将森林与混合图形中的森林相匹配; 将分界线分成成以美元为单位。 对于匹配森林, Kir\' {a}ly 和 Yokokoi (2022年) 和 Yokokoi (2022年), 认为根据匹配森林的大小以及其中的匹配和分支的大小, 具有三维标准是否公平。 与此相反, 我们根据覆盖的垂直数引入了单一公平分割。 从匹配森林的三角- 基尔\ { {a} 和 Yokokoi 的三角分区结构来看, 这个公平的分区的存在可以归因于基尔和约基 和约科 的利, 我们以直和直角的直角的直角 。 和直径 。 根基 的分层 的分层 定义 。