Bipartite testing has been a central problem in the area of property testing since its inception in the seminal work of Goldreich, Goldwasser and Ron [FOCS'96 and JACM'98]. Though the non-tolerant version of bipartite testing has been extensively studied in the literature, the tolerant variant is not well understood. In this paper, we consider the following version of tolerant bipartite testing: Given a parameter $\varepsilon \in (0,1)$ and access to the adjacency matrix of a graph $G$, we can decide whether $G$ is $\varepsilon$-close to being bipartite or $G$ is at least $(2+\Omega(1))\varepsilon$-far from being bipartite, by performing $\widetilde{\mathcal{O}}\left(\frac{1}{\varepsilon ^3}\right)$ queries and in $2^{\widetilde{\mathcal{O}}(1/\varepsilon)}$ time. This improves upon the state-of-the-art query and time complexities of this problem of $\widetilde{\mathcal{O}}\left(\frac{1}{\varepsilon ^6}\right)$ and $2^{\widetilde{\mathcal{O}}(1/\varepsilon^2)}$, respectively, from the work of Alon, Fernandez de la Vega, Kannan and Karpinski (STOC'02 and JCSS'03), where $\widetilde{\mathcal{O}}(\cdot)$ hides a factor polynomial in $\log \frac{1}{\varepsilon}$.
翻译:在Goldreich、Goldwasser和Ron[FOCS'96和JACM'98]的开创性工作中,Biparte测试是财产测试领域的一个中心问题。尽管文献中广泛研究了不宽容的双方测试版本,但宽容的变体却不十分理解。在本文中,我们考虑宽容的双方测试的以下版本:考虑到一个参数$\varepsilon =in (0,1美元) 和访问一个图$G$的相近矩阵,我们可以决定G$是 $\ varepslon$-cloon[locks'l] 或$$G$$至少是$(2 ⁇ Omega(1))\varelon$-farite, 执行一个宽度双方测试的 $\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\