Topological data analysis can provide insight on the structure of weighted graphs and digraphs. However, some properties underlying a given (di)graph are hardly mappable to simplicial complexes. We introduce \textit{steady} and \textit{ranging} sets: two standardized ways of producing persistence diagrams directly from graph-theoretical features. The two constructions are framed in the context of \textit{indexing-aware persistence functions}. Furthermore, we introduce a sufficient condition for stability. Finally, we apply the steady- and ranging-based persistence constructions to toy examples and real-world applications.
翻译:地形数据分析可以提供对加权图表和测算仪结构的洞察力。 但是, 某个特定( 测算仪) 背后的一些属性几乎无法绘制成像。 我们引入了\ textit{ stady} 和\ textit{ range} 集: 两种直接从图形- 理论特征生成持久性图的标准化方法。 两种构造都是以\ textit{ 索引- 认知持久性函数为框架的 。 此外, 我们引入了一种足够稳定的条件 。 最后, 我们将基于稳定的和广泛的持久性构造应用到玩具示例和真实世界的应用中 。